

3D Auroral Current Closure Modeling using GEMINI

Jules van Irsel¹, A. Mule¹, M. D. Zettergren², & K. A. Lynch¹ ¹Dartmouth College, Hanover NH ²Embry-Riddle Aeronautical University

First EZIE Science Workshop September 18, 2023, Johns Hopkins APL

DARTMOUTH

Context and Purpose

- **Model:** We're using GEMINI to model auroral current systems in 3D (github.com/gemini3d)
- **Model Type:** Multi-fluid, electrostatic with 2D+T B.C.'s Solves c. c. in 3D: $-j_{\parallel} = \Sigma_P \nabla \cdot \mathbf{E} + \mathbf{E} \cdot \nabla \Sigma_P - (\mathbf{b} \times \mathbf{E}) \nabla \Sigma_H$
- Scale: Auroral latitudes and arc scale sizes at ionospheric altitudes
- Model Drivers: 2D topside maps of auroral precipitation parameters + maps of field-aligned current *or* plasma flow
- **Purpose:** What self-consistency constraints exist in creating a geophysically coherent set of F-region quasistatic auroral system drivers?

Outline

- 1. Context and purpose
- 2. System level drivers/validations
- 3. Model drivers: data vs. ideal
- 4. Four ideal, example simulations
- 5. How EZIE can be used with GEMINI

Michael Sherman – www.SpringFedMedia.net

66

64

62

-160

DARTMOUTH

System Level Drivers/Validations

- GEMINI is a great tool, but we want to make sure we use it correctly!
- We need heterogeneous, data-inspired drivers and validators:
 - Rocket data: Isinglass (Dartmouth), GNEISS (Dartmouth)
 - Ground-based Imagery: DASC (UAF/GI), THEMIS-GBO (U Calgary)
 - Radar data: PFISR (UAF/GI), EISCAT
 - Neutral wind data: SDI (UAF/GI)
 - TEC data: Tomography or GPS
 - Spacecraft in-situ data: Swarm (ESA), EZIE?!

Graphic: A. Mule. Data: UAF/GI DASC (imagery) and ESA Swarm (flow/current)

4

DARTMOUTH

Model Drivers: Data vs. Ideal

ven

JVSICS

- What self-consistency constraints exist in creating a geophysically coherent set of F-region quasistatic auroral system drivers?
- Dissect complex, multiparameter, 3D auroral arc systems
- How to explore parameter sensitivities
- Use ideal drivers

Α

Basic/

Null

300

250 <

200

100

-1000

g 150

[km]

DARTMOUTH

200

0 0 East [km] 600

400

800

1000

DARTMOUTH

How EZIE can be used with GEMINI

Validation Driver ► ∑P/H Which simulation is Ground geophysical? Mags. ► j_{||} cut Q₀/E₀ $\sigma_{P/H}$ • Is \mathbf{j}_H from arc scale FAC closure resolvable Arc GBO 3D j ► j_{||} map -B map Bound. from auroral electrojet currents? Rocket/ 3D n v cut v map S/C Radar n